
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Towards Finding Accounting Errors in Smart Contracts
Brian Zhang

Blockchains and cryptocurrencies have become an integral part

of our economy. As of the writing of this paper, the global mar-

ket cap for cryptocurrencies reaches $1.19 Trillion USD, with the

top two blockchains being Bitcoin and Ethereum. An important

kind of blockchain-based applications are smart contracts, which

can encompass a wide range of services, from banks to gaming

platforms and marketplaces. Smart contracts follow the DeFi, or

decentralized finance principle. Unlike centralized systems, such as

federal banks, smart contracts operate in a decentralized manner

without a single controlling authority, rendering many novel finan-

cial applications. Similar to traditional software, smart contracts are

developed by programmers and inevitably have bugs. The lucrative

value of exploiting these bugs has made smart contracts one of

the most popular targets of many malicious actors. As of Q2 of

2023, $300 million USD were exploited from 212 security incidents,

suggesting that each exploit costed an average of $1.5 million USD.

Therefore, there is a pressing need to develop techniques to find

smart contract bugs. Existing techniques can be roughly classified

into four categories: static analysis, fuzzers, symbolic execution,

and verification. Static analysis toolsanalyze source code without

actually running the code. They usually transform smart contracts

to various intermediate representations and then search for certain

bug patterns. Fuzzers run contracts against a large number of in-

puts and transactions sequences. Symbolic execution analyzes all

possible program paths of a smart contract by performing symbolic

computation instead of concrete execution. Verification toolslever-

age formal methods to check smart contracts against formal specifi-

cations. These approaches have demonstrated great effectiveness in

identifying a broad range of issues. Some bugs such as reentrancy
and integer overflow and underflow can hardly survive these tools.

However, most automatic techniques rely on application agnos-

tic oracles, meaning that bugs need to be clearly defined without

considering application specific semantics. Such oracles may be

difficult to acquire for certain kinds of bugs. Verification tools are ca-

pable of detecting a wide spectrum of bugs including those that are

application specific. However, they need the developers to provide

application specifications, which may entail substantial manual

efforts. As a result, there are still a large number of bugs that are

beyond existing tools, evidenced by the growing number of attacks.

According to a recent study by Zhang et al. [1] on over 500

exploitable bugs (bugs that can lead to direct fund loss) from 119

real-world smart contract projects, 80% of exploitable bugs are

machine unauditable bugs (MUBs), meaning that they fall outside

of the scope of existing automatic tools. Among them, financial
bugs, which are incorrect implementations of underlying contract

business models, are the most common type of MUBs in projects

before deployment and also the second hardest to find in manual

auditing, due to the need of understanding the most complex parts

of contracts, namely, the business logics. On the other hand, their

impact can be devastating. An example would be the Uranium

Finance Exploit. Due to two extra zeros in an interest calculation,

the contract was exploited for $57 million USD. The bug survived

multiple rounds of manual auditing (by experts).

In this paper, I develop a type-checking tool for accounting bugs

in smart contracts. My insight is that although financial bugs reside
in complex business logic and seemingly lack an application-agnostic
oracle, many manifest themselves as abstract type violations. Abstract
type inference is a technique that can be traced back to the 70’s in the
last century. It aims to abstract higher level semantic information

such as physical units (e.g., seconds and meters) than those denoted

by primitive types in programming languages such as integers and

strings. As such, type systems can be enhanced to check a much

richer set of properties, such as physical unit consistency in robotic

systems. I further observe that although smart contracts have sophis-
ticated business models, their basic operations are still analogous to
those in a simple bank system, such as deposit, withdraw, exchange,

and loan. I hence devise an abstract type system based on these

operations that can infer and check abstract types. In particular,

I model and infer three facets of each variable, which are: token
unit indicating the kind of currency denoted by the variable (anal-

ogous to USD in real life), scaling factor that denotes how much

the variable has been scaled in order to simulate floating point

computation that is not supported in smart contract programming

languages, and financial meaning, e.g., if the variable denotes an
interest or a debt. With the rich types, I can check a large set of

properties that shall be uniformly true for various business mod-

els, using type rules. For instance, values of different token units

cannot be added or subtracted together, similar to how lengths of

meters and inches cannot be added together; amounts scaled by

different factors should not be compared; interest should not be

subtracted from debt but rather adds to it. To use my tool, the user

annotates a few global variables and function parameters with their

abstract types. The annotations are limited (see ??) and usually

clear from project description and even variable names. Then, my

technique automatically infers the abstract types for other variables

and performs type checking.

I implement a prototype ScType based on Slither [2]. I evaluate

the system on 50 real-world contracts from [1] and Code4Rena [3].

It finds 31 bugs with 87.9% recall and 73.8% precision. In contrast,

the state-of-the-art tools could only find 5 of the bugs. The paper

has been accepted to ICSE 2024 (a prestigious research conference

in Software Engineering) to be held in Portugal. My system can be

downloaded and tested at [4].

REFERENCES
[1] Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demystifying exploitable bugs in smart

contracts,” 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pp. 615–627, 2023.

[2] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework for smart

contracts,” in WETSEB@ICSE. IEEE / ACM, 2019.

[3] “Code4rena.” [Online]. Available: https://code4rena.com

[4] “sctype,” 2023. [Online]. Available: https://hub.docker.com/repositories/

icse24sctype

1

https://code4rena.com
https://hub.docker.com/repositories/icse24sctype
https://hub.docker.com/repositories/icse24sctype

	References

