
Towards Finding Accounting
Errors in Smart Contracts

Brian Zhang
Reusable v1.1

Available v1.1

Smart Contracts

● Blockchain-based application
● Provide a wide variety of services:

Smart Contracts

● Blockchain-based application
● Provide a wide variety of services:

○ Markets
○ Auctions
○ Gaming platforms

Smart Contracts

● Blockchain-based application
● Provide a wide variety of services:

○ Markets
○ Auctions
○ Gaming platforms

● Blockchains like Ethereum and Polygon support millions of transactions daily:
(4.65B daily volume)

○ Tokens (WETH) are used instead of direct real money (USD)

Smart Contracts

● Blockchain-based application
● Provide a wide variety of services:

○ Markets
○ Auctions
○ Gaming platforms

● Blockchains like Ethereum and Polygon support millions of transactions daily:
(4.65B daily volume)

○ Tokens (WETH) are used instead of direct real money (USD)

● They rely on the Decentralized Finance (DeFi) principle

Smart Contract Exploits

● Smart contracts are developed by humans, and thus inevitably contain vulnerabilities

Smart Contract Exploits

● Smart contracts are developed by humans, and thus inevitably contain vulnerabilities

● Smart contracts are lucrative targets for malicious actors

Smart Contract Exploits

● Smart contracts are developed by humans, and thus inevitably contain vulnerabilities

● Smart contracts are lucrative targets for malicious actors

● In Q2 of 2023, 212 exploits caused $300 million in damages

Smart Contract Exploits

● Smart contracts are developed by humans, and thus inevitably contain vulnerabilities

● Smart contracts are lucrative targets for malicious actors

● In Q2 of 2023, 212 exploits caused $300 million in damages

● Researchers have developed many techniques to prevent such exploits

Accounting Errors in Smart Contracts

● A 2023 study of over 500 smart contract bugs found that 80% of exploitable bugs
were beyond existing tools

Accounting Errors in Smart Contracts

● A 2023 study of over 500 smart contract bugs found that 80% of exploitable bugs
were beyond existing tools

● Of the 80%, exploits due to accounting errors made up 26.6%
○ Accounting errors are the most popular category

26.6%

Accounting Errors in Smart Contracts

● A 2023 study of over 500 smart contract bugs found that 80% of exploitable bugs
were beyond existing tools

● Of the 80%, exploits due to accounting errors made up 26.6%
○ Accounting errors are the most popular category

● Accounting errors are incorrect implementations of domain-specific business models

26.6%

Accounting Errors in Smart Contracts

● A 2023 study of over 500 smart contract bugs found that 80% of exploitable bugs
were beyond existing tools

● Of the 80%, exploits due to accounting errors made up 26.6%
○ Accounting errors are the most popular category

● Accounting errors are incorrect implementations of domain-specific business models
● Uranium finance exploit caused $87 million dollars of damages due to two extra

zeros
○ The bug survived multiple rounds of pre-deployment auditing

Motivating Example (from the Tracer Project)

● Performs an exchange from USD to WETH

Motivating Example (from the Tracer Project)

● Performs an exchange from USD to WETH
● Collects an exchange fee

Motivating Example (from the Tracer Project)

● Performs an exchange from USD to WETH
● Collects an exchange fee
● Analogous to converting money at an ATM

Motivating Example - Variables

● “user” is the address for a user
○ Analogous to credentials stored on a credit card

Motivating Example - Variables

● “user” is the address for a user
● “wethUserBalances” is an array storing the accounts of all users (in WETH)

○ Analogous to bank accounts

Motivating Example - Variables

● “user” is the address for a user
● “wethUserBalances” is an array storing the accounts of all users (in WETH)

○ Analogous to bank accounts

● “wethContractReserve” is the reserve/account of the smart contract (in WETH)
○ Analogous to ATM reserves

Motivating Example

● “usdcBalance” is the amount of USD to be exchanged

Motivating Example

● “usdcBalance” is the amount of USD to be exchanged
● “wethPrice” is the conversion price of USD to WETH

○ Around $3,600

Motivating Example

● “usdcBalance” is the amount of USD to be exchanged
● “wethPrice” is the conversion price of USD to WETH

○ Around $3,600 = 1 WETH

● “exg_fee” is the fee to be collected during the exchange

Motivating Example

● Performs the exchange from USD to WETH on line 7
○ Multiplies the amount of USD by the conversion price to WETH

Motivating Example

● Performs the exchange from USD to WETH on line 7
○ Multiplies the amount of USD by the conversion price to WETH

● Adds the exchange fee to the contract reserves on line 9

Motivating Example

● Accounting error on line 11
○ Should instead append by: “ wethBalance - exg_fee”

Error

Motivating Example

● Accounting error on line 11
○ Should instead append by: “ wethBalance - exg_fee”
○ Intuitively, it’s adding the “exg_fee” to the user’s account instead of decrementing

Error

Motivating Example

● Accounting error on line 11
○ Should instead append by: “ wethBalance - exg_fee”
○ Intuitively, it’s adding the “exg_fee” to the user’s account instead of decrementing

Fixed

Challenges to detecting Accounting Errors

● Challenge 1: No existing general-testing oracles
○ Oracles have made bugs such as Reentrancy and Integer Overflow obsolete

Buggy Smart Contract

Error Reported!

Challenges to detecting Accounting Errors

● Challenge 1: No existing general-testing oracles
○ Oracles have made bugs such as Reentrancy and Integer Overflow obsolete

● Challenge 2: Requires understanding the complex business logic of Smart
Contracts

Key insights to ScType

● Insight 1: Many accounting errors manifest as abstract type violations

Key insights to ScType

● Insight 1: Many accounting errors manifest as abstract type violations
● Insight 2: All smart contracts can be instantiated as banks

○ Many basic operations are analogous
○ I.e. Depositing, Withdrawing, Loaning …

ScType

● ScType is a type-checking system
○ It is implemented on the Slither static analysis tool

ScType

● ScType is a type-checking system
○ It is implemented on the Slither static analysis tool

● It introduces an abstract type for Solidity variables, ExtendedType:

ScType

● ScType is a type-checking system
○ It is implemented on the Slither static analysis tool

● It introduces an abstract type for Solidity variables, ExtendedType:
○ Financial Meaning

ScType

● ScType is a type-checking system
○ It is implemented on the Slither static analysis tool

● It introduces an abstract type for Solidity variables, ExtendedType:
○ Financial Meaning
○ Token Unit

ScType

● ScType is a type-checking system
○ It is implemented on the Slither static analysis tool

● It introduces an abstract type for Solidity variables, ExtendedType:
○ Financial Meaning
○ Token Unit
○ Scaling Factor

ScType

● ScType is a type-checking system
○ It is implemented on the Slither static analysis tool

● It introduces an abstract type for Solidity variables, ExtendedType:
○ Financial Meaning
○ Token Unit
○ Scaling Factor

● Allows for type rules to be created that check consistency and correctness of Smart
Contract operations

ExtendedType - Financial Meaning

● We observe that most smart contract projects can be mapped to functions of a bank

ExtendedType - Financial Meaning

● We observe that most smart contract projects can be mapped to functions of a bank
● Variables and Operations in smart contracts can be assigned a “meaning” based on

usage

ExtendedType - Financial Meaning

● We observe that most smart contract projects can be mapped to functions of a bank
● Variables and Operations in smart contracts can be assigned a “meaning” based on

usage
● Examples of Financial Meaning for variables:

ExtendedType - Financial Meaning

● We observe that most smart contract projects can be mapped to functions of a bank
● Variables and Operations in smart contracts can be assigned a “meaning” based on

usage
● Examples of Financial Meaning for variables:

○ “Raw Balance” - An amount of a currency owned by a user (that has not had fee applied to
it)

ExtendedType - Financial Meaning

● We observe that most smart contract projects can be mapped to functions of a bank
● Variables and Operations in smart contracts can be assigned a “meaning” based on

usage
● Examples of Financial Meaning for variables:

○ “Raw Balance” - An amount of a currency owned by a user (that has not had fee applied to
it)

○ “Price” - The ratio representing the transfer of one currency to another

ExtendedType - Financial Meaning

● We observe that most smart contract projects can be mapped to functions of a bank
● Variables and Operations in smart contracts can be assigned a “meaning” based on

usage
● Examples of Financial Meaning:

○ “Raw Balance” - An amount of a currency owned by a user (that has not had fee applied to
it)

○ “Price” - The ratio representing the transfer of one currency to another
○ “Reserve” - An amount of currency owned by the Smart Contract
○ …

ExtendedType - Financial Meaning

● Operations are constrained by the Financial Meanings of their operands
○ Certain operations do not make logical sense, nor result in meaningful output

ExtendedType - Financial Meaning

● Operations are constrained by the Financial Meanings of their operands
○ Certain operations do not make logical sense, nor result in meaningful output

● Provided is a table for “+” operations (Left Column + Top Row = Cell)

+ Raw Balance Price Reserve Fee

Raw Balance Raw Balance Reserve

Price Price

Reserve Reserve Reserve Reserve

Fee Reserve Fee

ExtendedType - Financial Meaning

● Operations are constrained by the Financial Meanings of their operands
○ Certain operations do not make logical sense, nor result in meaningful output

● Provided is a table for “+” operations (Left Column + Top Row = Cell)
○ “Raw Balance” + “Reserve” = “Reserve”

+ Raw Balance Price Reserve Fee

Raw Balance Raw Balance Reserve

Price Price

Reserve Reserve Reserve Reserve

Fee Reserve Fee

ExtendedType - Financial Meaning

● Operations are constrained by the Financial Meanings of their operands
○ Certain operations do not make logical sense, nor result in meaningful output

● Provided is a table for “+” operations (Left Column + Top Row = Cell)
○ “Raw Balance” + “Reserve” = “Reserve”
○ “Raw Balance” + “Price” = Error
○ The complete table can be found in our paper

+ Raw Balance Price Reserve Fee

Raw Balance Raw Balance Reserve

Price Price

Reserve Reserve Reserve Reserve

Fee Reserve Fee

Motivating Example

● “usdcBalance” has financial meaning “Raw Balance”
○ “Raw Balance”: An amount of tokens owned by users

Motivating Example

● “usdcBalance” has financial meaning “Raw Balance”
○ “Raw Balance”: An amount of tokens owned by users

● “wethPrice” has financial meaning “Price”
○ “Price”: An exchange rate from one token to another

Motivating Example

● “exg_fee” has financial meaning “Fee”
○ “Fee”: An amount of tokens that are taken as fee for an operation

Motivating Example

● “exg_fee” has financial meaning “Fee”
○ “Fee”: An amount of tokens that are taken as fee for an operation

● “wethContractReserve” has financial meaning “Reserve”
○ “Reserve”: An amount of tokens that are owned by the smart contract, not user

Motivating Example

● “wethBalance” has financial meaning “Raw Balance”

Motivating Example

● “wethBalance” has financial meaning “Raw Balance”
○ “usdcBalance” (Raw Balance) * “wethPrice” (Price) = “wethBalance” (Raw Balance)

Raw Balance Price

Motivating Example

● “wethBalance” has financial meaning “Raw Balance”
○ “usdcBalance” (Raw Balance) * “wethPrice” (Price) = “wethBalance” (Raw Balance)
○ Intuitively, multiply by price only changes the token unit, not the meaning

Raw Balance PriceRaw Balance

Motivating Example

● “wethContractReserve” has financial meaning “Reserve”
○ “wethContractReserve” (Reserve) + “exg_fee” (Fee) = “wethContractReserve” (Reserve)

Motivating Example

● “wethContractReserve” has financial meaning “Reserve”
○ “wethContractReserve” (Reserve) + “exg_fee” (Fee) = “wethContractReserve” (Reserve)

FeeReserve

Motivating Example

● “wethContractReserve” has financial meaning “Reserve”
○ “wethContractReserve” (Reserve) + “exg_fee” (Fee) = “wethContractReserve” (Reserve)

FeeReserve

Motivating Example

● “wethContractReserve” has financial meaning “Reserve”
○ “wethContractReserve” (Reserve) + “exg_fee” (Fee) = “wethContractReserve” (Reserve)

FeeReserveReserve

Motivating Example

● Error detected on line 11
○ “wethBalance” (Raw Balance) + “exg_fee” (Fee) = Error
○ Intuitively, “Fee” should only be taken away from a user’s “Raw Balance” and added to a contract’s

“Reserve”

Error

Motivating Example

● Error detected on line 11
○ “wethBalance” (Raw Balance) + “exg_fee” (Fee) = Error
○ Intuitively, “Fee” should only be taken away from a user’s “Raw Balance” and added to a contract’s

“Reserve”

ErrorFeeRaw Balance

Extended Type - Token Unit

● Token Unit represents the token denomination of a variable
○ Tokens are cryptocurrencies (Example 1: USDC, WETH)

● Intuitively, it is analogous to the symbols: “$” and “¥”

Extended Type - Scaling Factor

● Floating points are not supported in Solidity
○ Rely on scaling values by large factors (i.e. 1e18)

● Scaling Factor denotes how much a certain variable has been scaled

Research Questions

● RQ1: How effective is ScType at disclosing accounting bugs?
● RQ2: How effective is ScType at disclosing zero-day vulnerabilities?
● RQ3: How efficient is ScType?
● RQ4: What are the categories and distributions of accounting bugs?
● RQ5: What is the capacity of the type system?

RQ1: How effective is ScType at disclosing accounting bugs?

Ran ScType on 29 projects, covering 57 accounting error bugs

29 TP

11 FP

RQ1: How effective is ScType at disclosing accounting bugs?

Ran ScType on 29 projects, covering 57 accounting error bugs

● Bugs taken from the previously mentioned Web3 Bug Database

29 TP

11 FP

RQ1: How effective is ScType at disclosing accounting bugs?

Ran ScType on 29 projects, covering 57 accounting error bugs

● Bugs taken from the previously mentioned Web3 Bug Database
● Of the 57 accounting error bugs, 24 are out of scope

○ Belong to other categories (i.e. Pure math errors)
● 57 -24 = 33 accounting error bugs are in scope

29 TP

11 FP

RQ1: How effective is ScType at disclosing accounting bugs?

Ran ScType on 29 projects, covering 57 accounting error bugs

● Bugs taken from the previously mentioned Web3 Bug Database
● Of the 57 accounting error bugs, 24 are out of scope

○ Belong to other categories (i.e. Pure math errors)
● 33 accounting error bugs are in scope

ScType reports 29 True Positives and 11 False Positives

29 TP

11 FP

RQ1: How effective is ScType at disclosing accounting bugs?

Ran ScType on 29 projects, covering 57 accounting error bugs

● Bugs taken from the previously mentioned Web3 Bug Database
● Of the 57 accounting error bugs, 24 are out of scope

○ Belong to other categories (i.e. Pure math errors)
● 33 accounting error bugs are in scope

ScType reports 29 True Positives and 11 False Positives

It achieves an accuracy of: 29/33 = 87.8% 29 TP

11 FP

RQ2: Effectiveness at disclosing zero-day vulnerabilities?

ScType was run on a large real-world contract, named Tapioca Dao through Code4rena

● Code4rena is a vendor for smart contract auditing competitions

RQ2: Effectiveness at disclosing zero-day vulnerabilities?

ScType was run on a large real-world contract, named Tapioca Dao through Code4rena

● Code4rena is a vendor for smart contract auditing competitions

ScType was run on 9 smart contracts

● Found 6 zero-day vulnerabilities, 4 leading to direct fund loss
● Awarded $6,000 as a result

Related Work

● Liu and Y. Li, “Invcon: A dynamic invariant detector for ethereum smart
contracts,” Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022.

● Y. Liu, Y. Li, S.-W. Lin, and R.-R. Zhao, “Towards automated verification of
smart contract fairness,” Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020.

● Smart Contract and DeFi Security Tools: Do They Meet the Needs of Practitioners?

Take Away

We introduce ScType, an abstract type-checking tool, as a
detector for Accounting Errors in Smart Contracts

Take Away

We introduce ScType, an abstract type-checking tool, as a
detector for Accounting Errors in Smart Contracts
● Accounting Errors are difficult to debug:

Take Away

We introduce ScType, an abstract type-checking tool, as a
detector for Accounting Errors in Smart Contracts
● Accounting Errors are difficult to debug:

○ No general-testing oracles

Take Away

We introduce ScType, an abstract type-checking tool, as a
detector for Accounting Errors in Smart Contracts
● Accounting Errors are difficult to debug:

○ No general-testing oracles
○ Require understanding of complex business logics

Take Away

We introduce ScType, an abstract type-checking tool, as a
detector for Accounting Errors in Smart Contracts
● Accounting Errors are difficult to debug:

○ No general-testing oracles
○ Require understanding of complex business logics

● ScType is based on the insights that:

Take Away

We introduce ScType, an abstract type-checking tool, as a
detector for Accounting Errors in Smart Contracts
● Accounting Errors are difficult to debug:

○ No general-testing oracles
○ Require understanding of complex business logics

● ScType is based on the insights that:
○ Mostly manifest as abstract type errors

Take Away

We introduce ScType, an abstract type-checking tool, as a
detector for Accounting Errors in Smart Contracts
● Accounting Errors are difficult to debug:

○ No general-testing oracles
○ Require understanding of complex business logics

● ScType is based on the insights that:
○ Mostly manifest as abstract type errors
○ Smart contracts can be modeled in a way similar to banks

Take Away

We introduce ScType, an abstract type-checking tool, as a
detector for Accounting Errors in Smart Contracts
● Accounting Errors are difficult to debug:

○ No general-testing oracles
○ Require understanding of complex business logics

● ScType is based on the insights that:
○ Mostly manifest as abstract type errors
○ Smart contracts can be modeled in a way similar to banks

● ExtendedType models Financial Meaning, Token Unit, and Scaling Factor
○ Capable of achieving 87% accuracy on the Benchmark

Take Away

We introduce ScType, an abstract type-checking tool, as a
detector for Accounting Errors in Smart Contracts
● Accounting Errors are difficult to debug:

○ No general-testing oracles
○ Require understanding of complex business logics

● ScType is based on the insights that:
○ Mostly manifest as abstract type errors
○ Smart contracts can be modeled in a way similar to banks

● ExtendedType models Financial Meaning, Token Unit, and Scaling Factor
○ Capable of achieving 87% accuracy on the Benchmark
○ Caught 6 0-days with $6,000 in rewards

Thanks!

Github QRCode Paper QRCode

Reusable v1.1

Available v1.1

● RQ2: How efficient is ScType?

TODO

Motivating Example 1

Error should be reported here

[Corrected] Motivating Example 2

Motivating Example 2

Error should be reported here

[ScType] Example 2

● RQ3: What are the categories and distributions of accounting bugs?

TODO

● RQ4: What is the capacity of the type system?

TODO

Slither?

Abstract typing?

RQ1: How effective is ScType at disclosing accounting bugs?

Ran ScType on 29 projects, covering 57 accounting error bugs

● Bugs taken from the previously mentioned Web3 Bug
Database

● ScType reports 29 True Positives and 11 False Positives

Of the 57 accounting error bugs, 24 are out of scope

● Belong to other categories (i.e. Pure math errors)
● Hence, only 4 are not detected

ScType has an accuracy of 29/(29+4) = 87.9%

29 TP

11 FP

Spare pictures

