Demystifying Exploitable Bugs in Smart Contracts

Abstract—Exploitable bugs in smart contracts have caused sig-
nificant monentary loss. Despite the substantial advances in smart
contract bug finding, exploitable bugs and real-world attacks
are still trending. In this paper we systematically investigate
516 unique real-world smart contract vulnerabilities in years
2021-2022, and study how many can be exploited by malicious
users and cannot be detected by existing analysis tools. We
further categorize the bugs that cannot be detected by existing
tools into seven types and study their root causes, distributions,
difficulties to audit, consequences, and repair strategies. For each
type, we abstract them to a bug model (if possible), facilitating
finding similar bugs in other contracts and future automation.
We leverage the findings in auditing real world smart contracts,
and so far we have been rewarded with $102,660 bug bounties
for identifying 15 critical zero-day exploitable bugs, which could
have caused up to $22.52 millions monetary loss if exploited.

I. INTRODUCTION

Since the Bitcoin and blockchain techonology were intro-
duced in 2008, their market capitalization has experienced an
explosive growth, reaching over $438 billion (as of 5 August
2022) [1]. Nowadays, there exists countless blockchain-based
products and services for anyone to interact with, such as
those in travel, healthcare, finances, and lately virtual reality.
Blockchains such as Ethereum, Solana, and Polygon handle
millions of transactions everyday. High-level programming
languages like Solidity enable the creation and integration
of numerous innovative ideas with blockchains, in the form
of smart contracts. Just like traditional software applications,
smart contracts are composed by developers and hence sus-
ceptible to human errors. Many of them are exploitable.
According to [2], $1.57 billion were exploited from various
smart contracts as of 1 May 2022.

A large body of techniques have been proposed to detect
smart contract vulnerabilities such as reentrancy and integer
overflows, and they can be classified into categories such
as fuzzing [3]-[7], formal verification [8]-[14], and runtime
verification [15], [16]. Despite the success of these tech-
niques, smart contract exploits are still commonly seen in
the wild [17]. This may root at the fundamental differences
between smart contract and traditional software vulnerabilities.

Differences between Smart Contract and Traditional Soft-
ware Vulnerabilities. For traditional software, security vulner-
abilities are largely different from functional bugs. The former
has limited forms such as buffer overflow (leading to control
flow hijacking) [18], information leak [19], and privilege
escalation [20], whereas the latter is very diverse, denoting
violations of domain-specific and even application-specific
properties. Moreover, functional bugs in traditional software
usually lead to incorrect outputs and/or interrupted services,
which may not cause direct security concerns. In contrast,
smart contract vulnerabilities are in many cases functional
bugs, because due to their unique nature, incorrect outputs

in smart contract usually indicate monetary loss. Finding
these vulnerabilities hence requires checking domain-specific
properties, which is much harder than checking a limited set
of general security properties in traditional software. [
Therefore, we consider that it is highly valuable to sum-
marize recent exploitable smart contract bugs to understand
the underlying critical properties. In this paper, we study a
large set of 516 exploitable bugs from 167 real-world contracts
reported/exploited in years 2021-2022, and aim to summarize
their root causes and distributions. We collect these bugs from
the highly reputable Code4rena contests [21] (with a total
of 462 bugs), which invite individuals and companies from
all over the world to audit real-world contracts by providing
substantial bounties [22], and from various real-world exploit
reports (e.g., those from [23], [24]), with a total of 54 exploits.
The real-world exploits account for $256.3 millions monetary
loss. In the study, we answer a few research questions such
as how many such bugs can be detected by existing tools,
how difficult is it to detect such bugs, the root causes of
those that cannot be detected by tools, their consequences,
repair strategies, and distributions. The detailed setup of our
study is in §III. Compared to existing surveys and studies
on smart contract bugs (e.g., [25]-[28]), we collect the latest
bugs and study them from many unique perspectives such as
tool coverage, distributions and difficulty levels. We have 11
findings. Some of them are highlighted in the following.

e More than 80% exploitable bugs are beyond existing
tools. This is largely due to the lack in describing and
checking the corresponding domain-specific properties.

o Majority of exploitable bugs in the wild are hard to find,
including those within and beyond the scope of tools.

o The 80% exploitable bugs that are beyond tools, called
machine unauditable bugs (MUB), can be classified to 7
categories. Two of the categories (accounting for 40% of
the MUBs) are project/implementation specific such that
general oracles may not exist. The remaining 5 categories
have clear symptoms and can be properly abstracted such
that automated oracles may be devised.

« Different types of MUBs have different distributions and
different difficulty levels, with price oracle manipulation
(38%) and privilege escalation most popular in real-
world exploits and accounting errors most popular in
bugs found during audit contests.

e MUBs are easy to fix, requiring 15 LoC on average.

Contributions. We make the following contributions.

e We conduct the first comprehensive study of a large
number of smart contract vulnerabilities and identify the
missing gaps and difficulties in exploitable bug detection.

o We classify the exploitable bugs into different categories,
and extract their essence and root causes. We have a

number of findings, which may have ramifications for
future tool building.

o We compile and explain the needed background to ensure
the paper is self-contained, as understanding many bugs
requires substantial domain knowledge. We provide real-
world examples for each bug category as well.

o We demonstrate the importance of our findings by our
preliminary success in finding 15 zero-day exploitable
bugs in real-world smart contracts. These bugs could
endanger $22.52 millions funds if exploited.

II. BACKGROUND

To make the paper self-contained, we briefly introduce the
terms (italic and underlined) needed to understand the rest of
the paper. Experienced readers can skip this section.

Ethereum Blockchain. Ethereum [29] is an advanced frame-
work for the development of custom financial products on
the web. This is made possible through the underlying
blockchain [30], which provides secure information processing
and storage by an append-only public ledger that keeps track
of transactions. Groups of transactions are collected within
a block, where transactions can be mined by other users
known as miners, who use a visible public key and the
hash of a transaction to determine whether the transaction
is valid. Miners then vote on whether to accept or revert a
transaction. This process results in a “consensus view” of all
the transactions. Once transactions within a block are finished,
the block is appended onto the blockchain. Ethereum requires
anyone who submits a transaction to provide an appropriate
amount of gas, which is a fee paid to miners when they process
transactions. Transactions on Ethereum are transparent and
decentralized. As of 29 August 2022, Ethereum has a market
capitalization of more than $187 billions [31].

Smart Contracts. Smart contracts are applications that pro-
vide functionalities to realize some business model. They
are usually implemented by specific programming languages
such as Solidity [32] or Serpent [33], leveraging the primitive
services provided by Ethereum. Smart contracts are publicly
available for users to access and no changes to the internal
states of a smart contract can be hidden, hence the service
transparency. Smart contracts are owned by contract owners,
usually the developers. They have access to special functions
in the smart contract that are not callable by other users.

A smart contract has two kinds of functions: external and
internal. The former can be invoked by a user or the owner,
and the latter can only be invoked by another function within
the contract. A transaction starts when a user invokes an
external function. A transaction has atomicity, meaning that
changes within a transaction are not visible to the outside
world until it is committed/mined. Usually, the transaction
ends when it is mined and the root external function call
returns. A transaction may fail due to a variety of reasons.
When this happens, the transaction is undone. This is known
as a revert. In general, the execution model of smart contract
allows one atomic transaction at a time, meaning that it does

1 contract ERC20 {

2 owner => spender =2 amount

3 mapping (address => mapping (address => uint256)
4 internal _allowances;

5

6 function _approve (address owner, address spender,
7 uint256 allowance) internal {

8 _allowances [owner] [spender] = allowance;

9 }

10

11 function transferFrom(address from, address to,
12 uint256 amount) external ({

13 require (_allowances|[from] [msg.sender] >= amount) ;
14 _approve (from, msg.sender,

15 _allowances[from] [to] - amount);

16 _transfer (from, to, amount);

17 }
18}

Fig. 1: The Redacted Cartel exploit

not allow another invocation of an external function (by user)
when one is going on. Smart contracts can interact with each
other, constituting a decentralized finance (DeFi) [34].
Solidity. Syntax-wise, Solidity is similar to Java/JavaScript.
A contract is similar to a class in Java. Solidity provides a
require operation that asserts a condition. If the assertion fails,
an error message is emitted and the current transaction is re-
verted. Solidity uses msg.sender to denote the caller of current
(external) function, and this to denote the current contract.

Address. On Ethereum and the blockchain, entities such as
users and smart contracts are represented by an address,
or a 20 byte value (e.g., OxbfDD66a7dE4bB8f494f9
2A5f8D00443CA6cdaFLo).

Tokens and Crypto-currency. With the introduction of the
blockchain, Ethereum, and smart contracts came the need for
currency, in order to realize the business models that devel-
opers envision. Ethereum resolved this issue with the creation
of Ethereum Request for Comment (ERC) tokens. Intuitively,
assets are denoted by various kinds of tokens. Tokens can
be fungible or non-fungible (i.e., NFTs). ERC20 [35] tokens
are fungible, meaning that they are non-unique and inter-
changeable. An example would be that denoting a real-world
dollar bill. ERC721 [36] and ERC1155 [37] tokens are non-
fungible, meaning that they are unique in the making. For
example, houses and paintings in the physical world can be
represented by NFTs on Ethereum. Tokens can be minted
(created), transferred, or burned (destroyed) from a central
contract, influencing tokens’ values, which depend on the
amount of real-world assets stored within the central contract
against the amount of tokens in circulation. For example, one
could mint 100 fungible tokens to denote the ownership of an
asset, namely, each token denotes 1% of ownership. Users can
buy/sell tokens by dealing with their central contracts.

Exploitable Bugs and A Real-world Example. We call bugs
that can cause direct monetary loss exploitable bugs. Figure 1
depicts an example in Redacted Cartel [38]. An ethical hacker
reported this bug and was rewarded with a $560,000 bounty.
Specifically, it is a fungible token contract which piggy-
backs on real-world assets (e.g., USDC tokens backed by US
Dollars). The first line defines a contract ERC20. Lines 2-
4 define _allowances, a two-level mapping denoting the

amount of fungible tokens that the owner allows a spender
to spend. Note that the first-level key is the address of
owner, and the second-level key is the address of spender.
It is an internal field that can only be accessed by the
contract’s functions. Lines 6-9 defines an internal function,
_approve (), which updates the amount of allowance. It
internally updates _allowances [owner] [spender] at
line 8. Lines 11-17 define a function transferFrom that
transfers amount tokens from address from to address
to. It is an external function that can be invoked by any
parties including users and other smart contracts. At line 13,
the function first validates that msg. sender has sufficient
allowance from address from. It is achieved by the require
operation. Lines 14-15 update the caller’s allowance via func-
tion _approve. Line 16 invokes _transfer to update the
balances of to and from. The bug happens at line 15, where
the contract mistakenly uses the allowance of to instead of
msg.sender. That is, the correct allowance to update is
_allowances[from] [msg.sender]. Considering that a
victim user Alice grants Bob an allowance of 10 tokens, an
adversary Eve can invoke tranferFrom(Alice, Bob,
0) without any token transferred. However, since line 15
updates Eve’s allowance as _allowance[Alice] [Bob]
- 0, Eve illegally gains 10-token allowance of Bob.

Observe that this bug aligns better with functional bug in
traditional software while being exploitable. Human auditors
and automatic tools can hardly detect it without understanding
the meaning of _allowances and transferFrom, as
well as the business model. The bug survived multiple rounds
of auditing where automatic tools have been applied.

III. RESEARCH QUESTIONS AND STUDY METHODOLOGY

In this section, we first present the scope and research
questions of this study. We then explain our methodology of
collecting and analyzing data, as well as the threats to validity.
Threat Model and Scope of Our Study. In our threat model,
the adversary is a contract user who crafts special inputs
to exploit the on-chain contract and further cause monetary
loss. Other attacks such as insider attacks and spam attacks
are out of scope. Insider attacks are launched by privileged
users of the contract (e.g., owners who might steal funds
by leveraging the owner privileges). In spam attacks, the
adversary only setups a trap and the user has to be lured to
take actions leading to undesirable consequences. Since our
study focuses on vulnerabilities of on-chain contracts, we also
exclude attacks where off-chain components get involved.

Research Questions. We target the following four key re-
search questions. We call exploitable bugs that can be detected
by existing automatic tools machine auditable bugs and the
others machine unauditable bugs.

o (RQ1) What kinds of exploitable bugs are machine
auditable by existing tools? How many real-world ex-
ploitable bugs are machine auditable?

o (RQ2) How difficult is it to audit exploitable bugs?

¢ (RQ3) What are the root causes, categories, and distri-
butions of machine unauditable bugs?

TABLE I: Categories of on-chain projects

Categories Description
Lending Allow users to borrow and lend assets
Dexes Allow users to swap/trade crypto-currency
Yield Reward users for their staking
Services Service providers, e.g., tokenization
Derivatives Projects that get the value, risk, and basic term

structure from an underlying asset, e.g., options
Aggregate yield from a set of other projects
Projects that associate their values with real-world
assets, e.g., stocks

Yield Aggregator
Real World Assets

Stablecoins Cryptocurrencies that attempt to peg their market
value to some external reference, e.g., US Dollar

Indexes Projects that have a way to track the performance
of a group of related assets

Insurance Projects that provide monetary insurance

NFT Marketplace
NFT Lending
Cross Chain

Projects where users can buy/sell/rent NFTs
Allow users to colletarize NFTs for loans
Provide interoperability among blockchains

TABLE II: Basic information of Codedrena contests. # Cont
and # vuln denote the numbers of hosted contests and in-scope
bugs, respectively. # Atten denotes the number of auditors
who have attended at least one contest of the corresponding
category, while the total # atten denotes the total number
of auditors who have ever participated in Code4rena contests.
TVL denotes the overall value of crypto assets deposited in the
corresponding DeFi projects, i.e., the worth of these projects.

Categories # Cont Bounty # Atten # Vuln TVL
Lending 20 $1,145K 180 53 $304.8M
Dexes 13 $1,020K 139 70 $898.9M
Yield 12 $ 970K 193 85 $304.8M
Services 11 $ 532K 123 21 $219.8M
Derivatives 9 $ 525K 123 13 $147.8M
Yield Aggregator 9 $ 365K 124 22 $265.5M
Real World Assets 7 $ 405K 69 10 $ 41.8M
Stablecoins [§ $ 365K 102 7 $364.7TM
Indexes 6 $ 215K 101 7 $ 1.0M
Insurance 5 $ 298K 74 19 $ 42.9M
NFT Marketplace 4 $ 266K 126 8 $ 46.6M
NFT Lending 4 $ 230K 108 10 $ 82M
Cross Chain 4 $ 250K 81 7 $ 32.0M
Others 3 $ 110K 25 9 $118.3M
Total 113 $6.696M 358 341 $2.797B

e (RQ4) What are the symptoms and fixes of machine
unauditable bugs? Can they be properly abstracted such
that automated oracles can be devised.

The first two questions target all exploitable bugs, including
machine auditable and unauditable, to understand the success
and limitations of existing tools. The last two focus on the
latter kind on which the community shall place their efforts.

Data Collection. We collect two datasets of bugs, from the
Codedrena contests and real-world exploit reports.

Codedrena Contests. Codedrena [21] is a highly reputable
audit contest platform. Each Codedrena contest lasts for 3-7
days and aims to have real-world DeFi projects audited before
official deployment (pre-deployment), for which the developers
of subject projects commit a bounty in the range of $20K to
$1M as incentive. Individuals, companies, and institutes from
all over the world can participate. After the contest, a group
of Codedrena judges (i.e., very experienced auditors elected

TABLE III: Basic information of surveyed real-world exploits

Attacks Bug Bounties
Categories

Bugs Fund loss # Bugs Bounties

Lending 1 $ 5,000K 2 $ 1,630K
Dexes 7 $ 13,950K 3 $ 65K
Yield 6 $ 20,300K 1 $ 10K
Services 3 $ 5,600K 2 $ 610K
Derivatives - - 2 $ 200K
Yield Aggregator 1 $ 2,100K 2 $ 300K
Real World Assets 2 $ 1,127K 1 $ 50K
Stablecoins 5 $211,360K - -
Indexes - - 1 $ 90K
NFT Marketplace 1 $ 20K - -
NFT Lending 2 $ 5,800K - -
Cross Chain - - 1 $10,000K
Others - - 1 $ 1,050K
Total 28 $265,257K 16 $14,005K

by the community) and the project’s developers get together
to inspect the bug reports, where they confirm the valid ones,
classify reports based on root causes, and decide the criticality
level of bugs. Note that each bug is assigned a criticality level:
low, medium, or high, where only high-risk bugs can cause
assets loss (and hence are exploitable) [39]. The final reward
is decided by both the criticality level of bug and the number
of reports submitted for the bug (more submissions lead to a
lower reward as the bug is easier than others).

We collect and analyze 462 unique high-risk bugs from 113
Code4drena contests hosted between April 2021 and June 2022.
For each case, we inspect the bug report, the faulty contracts
(which are available through Github), and the project’s doc-
umentation. Following the suggestions in Claes et al. [40],
each bug is checked by at least two individual researchers.
Any disagreement will be turned to an additional researcher.
We reach consensus for all cases after the new researcher gets
involved. All our researchers are experienced auditors, having
participated 23 contests from February 2022 to June 2022.
One of them was invited to be a consultant for judges.

Among the 462 surveyed bugs, we identify 341 in-scope
bugs (exploitable by remote users). Table II presents the
basic information of surveyed contests and the in-scope bugs.
The first column presents the categories of on-chain projects,
following the taxonomy by Defil.lama [41], a leading DeFi an-
alytics platform. The description of each category is presented
in Table I, while details are available in §I of our supplemen-
tary material. Observe that around $2.8 billions are protected
by Codedrena auditing, indicating the representativeness of the
dataset, and $6.7 millions are committed as bounties.
Real-world Exploits. Our second dataset comprises 54 real-
world exploits, collected from postmortems and bugfix reviews
of real-world exploits from January 2022 to June 2022. These
reports are published by highly-reputable security researchers
(e.g., [23], [42]) and companies (e.g., [24], [43]-[45]). We
follow the aforementioned study methodology (for Code4rena
reports). Overall, we identify 44 (out of 54) in-scope bugs. Ta-
ble III presents the basic information. Real-world exploits tar-
get post-deployment contracts, including real attacks launched
against on-chain contracts and caused real asset damage (i.e.,
attacks), and the cases in which ethical hackers demonstrated

vulnerabilities in a local off-chain environment and were
awarded bug bounties by the projects (i.e., bug bounties).
The first column of Table III denotes the categories. Columns
2-3 denote the number of in-scope bugs and fund loss by
attacks respectively, while columns 4-5 denote the ones for
bug bounties. Observe that, while $14 million were paid as
incentives to ethical hackers, over $265 million were lost due
to real attacks in the first half of 2022; despite the substantial
auditing efforts paid prior to deployment, there are still many
post-deployment exploitable bugs.

Finding 1: Although the DeFi community has heavily in-
vested on protecting their products, the current supply of
tools and human auditor resources have not met the demand.

Threats to Validity The internal threat to validity mainly
lies in human mistakes in the study. Specifically, we may
misclassify a bug and miss a category. To reduce this threat,
we ensure each bug has been examined by at least two
authors. Disagreement will be turned to an additional author.
The categorization is agreed on by all the authors. Most
authors have extensive smart contract auditing experience and
cyber-security/software-engineering expertise in general. The
external threat to validity mainly lies in the subjects used in
our study. The bugs we study may not be representative. We
mitigate the risk using highly reputable data sources and a
large number of bugs. Since we focus on recent bug reports,
the study may not represent historic bugs well. However, we
argue that studying up-to-date bugs is of importance due to
the fast evolution pace of the field.

IV. (RQ1) ON THE EFFECTIVENESS OF EXSISTING
AUTOMATIC TOOLS

To understand the capabilities of existing techniques, we
examine the literature to summarize the kinds of bugs that
can be detected by existing methods. We then study how many
of the exploitable bugs in our datasets fall in their scope. To
empirically support the correctness of our examination, we
also apply two state-of-the-art commercial tools to our datasets
to see whether they can detect the bugs.

In particular, we examine papers published on top-tier
Software Engineering, Security, and Programming Language
venues from 2017 to 2022. Overall, we include 38 existing
methods and summarize the bugs handled by them into 17
types. We call them machine-auditable bugs (MAB). Table IV
presents the MABs, with more details available in §II of
our supplementary material. An important observation is that
their test oracles are general and sufficiently simple to support
instantiations in a wide range of projects. They hence have a
similar nature to general oracles used in traditional software
such as buffer-overflow and use-after-free. For example,
control-flow hijack bugs (CH) use an oracle similar to that
used in control flow integrity (CFI) [80], [81] in traditional
software. Reentrancy bugs (RE) use an oracle that detects
cycles in an transaction, which is generally applicable to
all contracts. Therefore, they can hardly cover functional

TABLE IV: Categories of machine-auditable bugs

ID Bug Name

Description

AF Assertion Failure Assertion is not satisfied.
AW Arbitrary Write Arbitrary storage data gets overwritten due to
mismanaged objects or improper proxies
BD Block-state Ether transfer depends on block states, e.g.,
Dependency block.timestamp or block.number.
CE Compiler Error The contract mis-behaves due to using an out-
dated compiler which contains known bugs.
CH Control-flow Hijack Users can arbitrarily control the destination
of a control-flow transfer.
EL Ether Leak User can freely retrieve ether from the contract.
FE Freezing Ether No one can retrieve a (large) portion of locked
ether from the contract.
GI Gas-related Issue Execution fails due to insufficient gas.
1B Integer Bug Integer overflows or underflows.
ME Mishandled Exception The contract does not check an exception
from external function invocations.
PL Precision Loss Significant precision loss during calculation.
RE Reentrancy A victim function gets re-entered by an un-
trusted callee, leading to state inconsistency.
SC Suicidal Contract An arbitrary user can destroy the contract.
TD Transaction-ordering The result of an execution trace depends on
Dependency another trace sent by a different sender.
TO Transaction Origin The result of an execution trace depends on
Use tx.origin for user authorization.
UV Uninitialized Variable Uses of uninitialized storage variables.
WP Weak PRNG A pseudo-random number generator (PRNG)

TABLE V: Summary of existing tools. Com denotes whether
it is a commercial tool widely used in real-world auditing.
Orecl stands for test oracles, where O, ©, and @ denote fixed
and simple oracles, hand-coded oracles, and oracles that can
automatically adapt to cover a wide range of functional bugs,

respectively. The remaining columns present bug coverage.

Machine-auditable Bugs

relies on predictable variables.

bugs that require domain-specific or even application-specific
oracles [82] (e.g., the Redacted Cartel bug in Figure 1).
Table V provides the examination results of existing works.
We classify them into four categories: fuzzing, static analysis,
formal verification, and symbolic execution. Overall, there are
12 commercial tools, developed by leading companies, such
as Trail of Bits [83] and ConsenSys [84]. Also observe that
most commercial tools provide coverage for a wide variety of
bugs. Most existing works (35 out of 38) rely on general and
simple oracles, or hand-coded specifications (e.g., Echidna and
VeriSol). ContraMaster proposes an interesting general oracle
that has the potential to cover a wide range of functional
bugs. That is, for a single asset, the total balances of all
parties should not change. Although the advantages of having
such a general invariant are prominent, many modern DeFi
projects employ aggressive and complex business models that
are beyond this invariant. For example, lending projects are
naturally designed for multi-asset business within which the
total balances of a single asset is volatile. It is interesting to see
if similar invariants can be developed for these new contracts.

Finding 2: Existing techniques rely on simple and general
oracles or hand-coded ones that are project specific. Such
oracles may not be sufficient for functional bugs in general.

For any bug in our datasets, as long as it falls into the scope
of any existing work in Table V (assuming 100% precision and
recall of these tools), we consider it machine-auditable. Fig-
ure 2 depicts the breakdown of machine auditable and unau-
ditable bugs in our datasets. Observe that, despite the over-
approximation, only 20% exploitable bugs can be detected
by existing works, disclosing a significant supply shortage of

=1 = = g3
Z £ 255228850 0 EYEREE
ReGuard [46] 18 O v
ContractFuzzer [47] 18 O v v Y v v
ILF [7] 19 O v VvV v Y
o Vultron [48] 19 O VYooV
S sFuzz [49] 20 v VvV v v
S Harvey [3] 20vOvv VoV
= ContraMaster [50] 20 @ vy oV
ConFuzzius [51] 21 Ov v v vV v v v vV
Smartian [6] 20v0Ovvy VVVVY VY VvV oV
Echidna [52], [53] 21 v © v
xFuzz [54] 2 O v v v
Gasper [55] 17 O v
Securify [56] 8vO vv vvv VAN NG
Vandal [57] 18 O v v v O vYv v
i MadMax [58] 18 O N4
'S SASC [59] 18 O v v v v
< SmartCheck [60] 18 v O v VYV Y oV v
L:: Zeus [61] 18 O v VY VYV
& Slither [14] 9wvO vvvvvy VYV VYV
Sereum [62] 19 O v v
NPChecker [63] 19 O v v v vV
Sensors [64] 2 O v v v
Remix [65] 2vOv v v v v
g ECF [66] 17 O v
S Sole-Verify [67] 19 O v v v
& VeriSol [68] 19v0v
8 VeriSmart [69] 20 O v v
Solid [70] 21 O v
Oyente [8] 6vOv v v v VY
£ Maian [71] 18 O v v v
£ teEther [72] 18 Ov v v v
2 Osiris [73] 18 Ov v v v
“ Manticore [74] 19vOv v v A,
= sCompile [75] 19 Ov Va4 v v
'E M-A-R [76] 21 O v
& SmarTest [77] 21 Ov v v v
Mythril [78] 2vOvvv vV VYV
Sailfish [79] 2 O v v
70 \ \ Machine
@5%) \ \ Auditable
‘\ 271) \ 35 /" Machine
(79.5%) \ (7W Unauditable

(a) Codedrena Bugs (341) (b) Real-world Exploits (44)
Fig. 2: Breakdown of the bugs

automated bug finding capabilities. We empirically validate the
finding. Specifically, we run Slither [14] and Oyente [8], two
state-of-the-art commercial tools, on our datasets. Neither can
detect any machine unauditable bug (by our classification).

Finding 3: A large portion of exploitable bugs in the wild
(i.e., 80%) are not machine auditable.

We speculate the main reason is Finding 2 — existing tools
have limited oracles, i.e., only checking limited properties.

80.00% < X Machine Auditable
-S|
60.00% [Machine Unauditable
X
& .o
40.00% = 3 s
a2 X & e
S L3 < . 3
20.00% a g e £ a g8 =5
< o g & g o -
0.00% e m——r
1 2 3 4 5 >=6

Fig. 3: Overall auditing difficulty. Each bar denotes how
many machine (un-)auditable bugs are reported by the given
number of auditors, where x-axis and y-axis denote the
number of auditors and the ratio w.r.t. the total number of
machine (un-)auditable bugs, respectively.

Note that it does not suggest existing tools are ineffective.
It is well possible that a large number of machine auditable
bugs have been detected and prevented during development
(and hence not present in our datasets).

V. (RQ2) ON THE DIFFICULTY OF AUDITING
EXPLOITABLE BUGS

It is in general very hard to determine the difficulty level of
detecting certain bugs, by tools or manual efforts. However,
the Codedrena contests provide a perfect platform to quantify
bug difficulties. Specifically, each contest is participated by
a large number of independent auditors, who submit their
reports separately. Although there are skill level variations of
the auditors, we consider the number of submitted reports for
a bug suggests the relative difficulty level in finding the bug,
intuitively, fewer bug reports, harder to find.

Figure 3 delineates the difficulty of auditing exploitable
bugs. It shows that 52.46% of machine auditable bugs and
54.29% of machine unauditable bugs are only reported by
a single auditor, and hence most difficult. The ratios for
machine auditable and unauditable bugs found by two auditors
are 27.87% and 20.00%, respectively. Only around 25% of
exploitable bugs are found by three or more auditors.

[Finding 4: Majority of exploitable bugs are difficult to ﬁnd.J

Also observe that the difficulty distributions of machine
auditable and unauditable bugs are quite similar. That is, the
majority of bugs in either kind are difficult. There are multiple
possible explanations. One is that the machine auditable bugs
in the wild are already left-over after tool scanning during
development. As such, they are found by manual efforts during
contests. Note that it is impossible to know if the auditors used
tools or manual efforts to find these bugs. Another explanation
is that bugs that are difficult for humans are likely difficult for
tools as well due to similar inherent challenges in analysis.

Finding 5: There are no obvious differences between audit
difficulty distributions of machine-auditable and machine-
unauditable bugs.

VI. (RQ3) ON THE CATEGORIES OF MACHINE
UNAUDITABLE BUGS

Since 80% of exploitable bugs are not machine auditable,
we focus on such bugs in the rest of the paper. In this section,

Codedrena Bugs (271)

Real-world Exploits (35) ‘

(5.9%) 16[Price Oracle Manipulation []12 (34.3%)
(26.6%) 72 Erroneous Accounting 13 (8.6%)
(15.9%) 43| . ID Uniqueness Violations [1(2.9%)
(181%)49 7 Inconsistent State Updates []4 (11.4%)
(92%) 250 Privilege Escalation [118(22.9%)
(8.1%)22[Atomicity Violations 12 (5.7%)
(16.2%) 44| o Contract Impl Specific Bugs []5 (14.3%)

Fig. 4: Breakdown of different types of MUBs

TABLE VI: Auditing difficulties for MUBs of different types

Auditors
es

Ty 1 2 3 4 5 >=6
Price Oracle Manipulation 12.50% 0.00% 0.00% 0.00% 12.50%
Erroneous Accounting [SERERZS 21.21% 7.58% 6.06% 3.03% 3.03%
ID Uniqueness Violations 17.14% 8.57% 11.43% 5.71% 14.29%
Inconsistent State Updates JSEREVAN 22.22% 2.22% 6.67% 6.67% 8.89%
Privilege Escalation 8 /8 21.74% 8.710% 4.35% 0.00% 8.70%
Atomicity Violations JSESERZN 19.05% 4.76% 4.76% 4.76% 9.52%
Contract Impl Specific Bugs 20.51% 17.95% 5.13% 0.00% 10.26%

we aim to categorize machine unauditable bugs according to
their root causes and study their distributions.

A. Root Causes and Categorization

The 271+35 machine unauditable bugs can be grouped into
7 categories: (C1) price oracle manipulation; (C2) erroneous
accounting; (C3) ID uniqueness violations; (C4) inconsistent
state updates; (C5) privilege escalation; (C6) atomicity viola-
tions; and (C7) implementation specific bugs. Their distribu-
tions can be found in Figure 4. We also present their difficulty
levels in Table VI, using the same metric as Figure 3.

(C1) Price Oracle Manipulation. Smart contracts usually
resort to external authorities on Ethereum, which are also
contracts called price oracles, to determine the price of an
asset. Oracles use certain rules to determine prices (e.g., based
on reserve balances). However, if an application contract does
not use a price oracle’s APIs properly, the adversary can
interact with the price oracle in a legit way to influence the
price query result returned to the application contract to gain
illegal profits. More detailed explanation and an example can
be found in §VII-A. It is one of the most notorious types
of vulnerabilities in the DeFi history, causing at least $44.8
millions loss in the first half of 2022 alone. As shown in
Figure 4, it constitutes 6% of the Codedrena bugs (the least
common bug) and 34% of the real-world exploits (the most
common exploit). Table VI shows that the auditing difficulty
of such bugs is significantly higher than others. As such many
of them evade auditing and get exploited after deployment.

(C2) Erroneous Accounting. Many smart contracts imple-
ment complex business models. The implementations hence
involve a lot of difficult-to-interpret numerical computation.
We call incorrect implementations of underlying business
model formulas erroneous accounting bugs. These bugs usu-
ally introduce small errors every time they are exercised.
Howeyver, these errors can accumulate and induce substantial
loss. For example, Compound Finance [85], a flagship lending
contract, was exploited and had over $80 millions stolen, due
to an unnoticeable problematic calculation of annual percent-
age yield [86]. The bug survived 9 rounds of auditing by top

TABLE VII: Breakdown of MUBs w.r.t. DeFi categories

Codedrena Bugs

Categories

Cl C2 C3 ¢4 C5 C6 (7

Lending 3 6 4 7 9 6 8

Dexes 2 16 8 15 3 1 6

Yield 7 23 17 8 5 6 10

Services 0 4 2 5 0 0 3
Derivatives I 0 2 0 1

Yield Aggregator 1 6 0 5 0 1 4
Real world assets 1 0 4 3 0 0 1
Stablecoins 0 2 1 0 0 0 2
Indexes 0 0 1 2 0 2 0
Insurance 0 3 1 3 3 2 4

NFT Marketplace 0 1 1 0 1 2 1
NFT Lending 1 1 1 0 1 1 1
Cross Chain 0 1 1 1 1 0 1
Others 0 3 1 0 0 1 2

security companies [87] and even formal verification [88]. It
was not found until being exploited. Figure 4 shows that it is
the most popular type of Codedrena bugs (27%) and the 5th
most popular type of real-world exploits. As Table VI shows,
its auditing difficulty is slightly above average, with around
59% being found by a single auditor. The reason is that finding
such bugs requires substantial domain knowledge. The very
broad participation of Code4rena contests seems to provide a
good coverage of domain expertise such that many these bugs
can be captured (although each by very few auditors). More
details are in our supplementary material (§IV).

(C3) ID Uniqueness Violations. Most smart contract func-
tionalities are in the form of some entity (e.g., a user or
contract) operating on some asset (e.g., an NFT token). As
such, access control is needed in these processes and enti-
ties/assets ought to be uniquely represented. Within smart con-
tract implementation, entities and assets are usually denoted
as data structures, which often have an ID field that uniquely
represents an entity/asset. However, developers may forget to
ensure uniqueness of ID fields; they may mistakenly consider
other data fields are unique and use them as replacement IDs.
As such, the adversary could impersonate an entity or create a
fake/duplicate asset that has the same field value as some real
entity/asset to pass the access control checks and then perform
illegal operations. We call this type of bugs ID uniqueness
violations. It constitutes 16% of the Code4rena bugs (43 out
of 271) and 3% of real-world exploits (1 out of 35). It is
the 4th and the 7th most commonly seen type of bugs in the
two respective datasets. Such bugs are relatively easy to find,
with 57% reported by multiple auditors. This could explain its
distribution difference in the two datasets as ID bugs may be
largely found during auditting (e.g., Codedrena contests).

(C4) Inconsistent State Updates. Smart contracts have many
state variables (e.g., debts and collaterals) with implicit corre-
lations. For example, the credit limit of a user is proportional
to her collateral in a lending contract. However, when the
developers update one variable, they may forget to update the
correlated variable(s) or update incorrectly. Depending on the
state variables that are incorrectly updated, the consequences
of this kind of bugs range from incorrect statistics to loss
of funds. In the recent year, three exploits [89]-[91] caused
around $3.8 millions loss and also the collapse of a smart con-

tract’s internal economy. It constitutes 18% of the Codedrena
bugs (49 out of 271) and 11% of the real-world exploits. It
is the 2nd and the 4th most commonly seen bugs in the two
datasets. The bug difficulty level is about average.

(C5) Privilege Escalation. Smart contracts often support a
number of business flows, each denoting a unique use case.
For example, a lottery contract needs to support at least three
distinct flows including buying tickets, drawing winners, and
claiming prizes. A business flow may consist of a sequence
of transactions in the temporal order. Within a flow, sensitive
operations are guarded by access control checks. However,
there may be some unexpected business flow to a sensitive
operation along which the access control is weaker than
necessary. This is very similar to privilege escalation bugs that
are very popular in mobile applications [20]. These bugs have
diverse consequences, depending on the sensitive operations
that are not well protected. Nearly $7.5 millions got stolen in
2022, due to privilege escalation bugs. It constitutes 9.2% of
the Codedrena bugs and 22.9% of the real-world exploits. It
is the second most popular type of real-world exploits. The
difficulty of auditing them is about average.

(C6) Atomicity Violations. Multiple business flows (i.e.,
transaction sequences) may interleave and interfere with each
other, by accessing the same state variables. Some business
flows may require business level atomicity, demanding state
variables cannot be accessed by other flows while they are on-
going. Developers do not anticipate such interference and fail
to ensure (business level) atomicity. The reason of these bugs
is that developers mistakenly think atomicity is guaranteed
by the runtime and hence they do not need to be concerned.
However, the runtime only ensures each transaction is atomic,
and business flow atomicity, if needed, has to be ensured by
the developers. Atomicity violations constitute 8.1% of the
Codedrena bugs and 5.7% of real-world exploits. It is the least
common bugs in auditing, and the second least in the wild.
They are slightly harder to find (than the others), with 57% of
bugs found by only one auditor. The reason is that it is difficult
to determine business flows and if they need atomicity.

(C7) Contract Implementation Specific Bugs. We find
that 16% of the Codedrena bugs and 14% of the real-world
exploits are implementation specific, meaning that they do not
have a general oracle and unlikely appear in a different smart
contract. They hence have a low priority because abstracting
them may not provide as valuable guidance as the others.
The Redacted Cartel bug in Figure 1 is an example.

Finding 6: Machine unauditable bugs (MUBs) can be
classified to 7 categories, with 85% belonging to categories
C1-C6 that are not project specific.

Finding 7: Different types of MUBs have different popular-
ity, with accounting errors (C2) and price oracle manipu-
lation (C1) most popular in the Code4rena bugs and the
real exploits, respectively. Auditing is particularly effective
in preventing certain bugs such as accounting errors.

Finding 8: Different types of MUBs have different auditing
difficulties, with price oracle manipulation and ID unique-
ness violation bugs the hardest and the easiest, respectively.

B. Bug Distributions in Different Types of Projects

To understand what kinds of bugs are more likely in a
specific type of contracts, we study the distributions of MUBs
in different DeFi categories. Table VII presents the results
of Codedrena bugs. Note that we do not include real-world
exploits because only 3 out of the 14 (DeFi) categories have
more than 3 exploits, which may induce substantial threat to
validity. The grey scale denotes the prevalence. For example,
55% (i.e., 6/11) of derivative projects’ bugs are caused by
erroneous accounting (C2) but only 30% (i.e., 23/75) for yield
projects. The former is therefore darker than the latter. Observe
that a few bug types are particularly prevalent in some DeFi
categories, such as erroneous accounting (C2) and inconsistent
state update (C4) bugs in Dex projects. This is mainly due to
the unique nature of these projects. For example, Dex projects
swap and trade assets. They use complex computation to deal
with the volatility of crypto-currency, and are hence prone to
erroneous accounting bugs. These suggest that auditors may
want to devise different auditing strategies for different types
of projects, e.g., prioritizing the prevalent bug types. We follow
such strategies during our guided auditing (§VIII).

Finding 9: Different kinds of DeFi projects tend to be prone
to different types of MUBs.

VII. (RQ4) ON THE SYMPTOMS AND FIXES OF MACHINE
UNAUDITABLE BUGS

We use real example of (C1) price oracle manipulation and
(C5) privilege escalation bugs, the most popular real-world
exploits to demonstrate their symptoms and repair strategies.
We also provide an abstract model for each bug, which could
facilitate future scanning tool and test oracle building.

A. Price Oracle Manipulation (CI)

These bugs require additional knowledge. We first introduce
the concepts and then explain such bugs with an example.

Price Oracle and Automated Market Maker. Determining
the price of an asset is a critical functionality for a business
model. In DeFi, it is done by price oracles. Despite a diverse
set of price oracle contracts, the predominant sort is Automate
Market Maker (AMM), which is designed for exchanging two
types of assets, e.g., WETH and USDC (similar to USD in
real-world), with which users can exchange one asset for
another and the exchange rate is decided by a pre-defined
invariant law. In Uniswap [92], a leading AMM contract, the
invariant is denoted by a constant product formula, expressed
as x X y = k, stating that trades must not change the product
k of a pair’s reserve balances (within the contract) [93], e.g.,
x for WETH and y for USDC. The price of one asset over
the other is hence decided by their ratio, e.g., y/x denoting
the price of WETH over USDC. Intuitively, more supply of x
leads to its depreciation and y’s appreciation. A code snippet

1 contract LendingContract ({

2 IERC20 public WETH;

3 IERC20 public USDC;

4 IUniswapV2Pair public pair; uUsbhC WETH

5 debt --> USDC, collateral --> WE

6 mapping (address => uint) public debt;

7 mapping (address => uint) public collateral;

8

9 function liquidate (address user) external {

10 uint dAmount = debt [user];

11 uint cAmount = collateral [user];

12 require (getPrice() * cAmount x 80 / 100 < dAmount,
13 "the given user’s fund cannot be liquidated");
14 address _this = address (this);

15 USDC.transferFrom(msg.sender, _this, dAmount);
16 WETH.transferFrom(_this, msg.sender, cAmount);
17 }

18 function getPrice() view returns (uint) {

19 return (USDC.balanceOf (address (pair)) /

20 WETH.balanceOf (address (pair)))

21 }

22}

Fig. 5: Price oracle manipulation exploit in Deus Finance

from Uniswap, its explanation, and an example are presented
in §III-A of our supplementary material.

Price Oracle Manipulation. Despite being pivotal for DeFi
project development, price oracles are occasionally used im-
properly by application contracts, rendering their price queries
vulnerable. It is not a bug in the price oracle contract, but
an issue caused by oracle misuse in the application contract.
For example, although Uniswap provides an official (and
well protected) API for price queries, application contract
developers tend to implement their own queries (to Uniswap)
to avoid the expensive gas costed by the official API. A
common faulty code pattern in the application contract is to
simply determine the price by querying the ratio of two assets’
instant balances in the oracle contract. Recall that block-chain
transactions are atomic so that any action sequence in a single
transaction cannot be interrupted or interleaved with other
actions. Hence, a malicious user can tamper with the price
without the interruptions of arbitragers. It is done by first
processing an exchange (with the oracle), then invoking a
function in the vulnerable application contract which makes an
erroneous query (to the oracle), and finally processing another
exchange (with the oracle) which is the counter version of
the first one. Essentially, the first exchange imbalances the
Uniswap contract in order to manipulate the follow-up price
query, while the second exchange re-balances the Uniswap
contract to avoid losing the (borrowed) funds used in step one.
Note that the three actions are wrapped in a single transaction
(a piece of code written by the adversary), guaranteeing that
no arbitrage behavior can interfere the attack.

Example. Fig. 5 presents a vulnerable code snippet, which is
slightly modified from a real-world exploit against the Deus
Finance causing a loss of $3.1 millions. The bug survived at
least one publicly-known audit round [94]. Deus is a lending
contract that allows users to deposit WETH as collateral and
borrow USDC. Lines 2-4 define the addresses of WETH,
USDC, and the Uniswap AMM, respectively. Line 6 defines a
mapping debt, which denotes the amount of borrowed USDC
for each user, and line 7 a mapping collateral for the

amount of each user’s deposited WETH. As a lending contract,
Deus supports multiple basic functionalities, including deposit-
ing collateral, withdrawing collateral, getting loans, and paying
debts. The vulnerability lies in function 1iquidate (line 9)
which forces to close a given user’s ill position, i.e., the user’s
debts exceeds 80% of her collateral. To do so, the function’s
caller, i.e., msg.sender, pays the user’s debt and gets her
collateral. Specifically, the function first checks whether the
position of user is ill (lines 10-13) and processes the token
transfers (lines 14-16). The price oracle is involved when
calculating the real-world value of the collateral, i.e., WETH,
through function getPrice () (defined in lines 18-21). The
function does not use Uniswap API. Instead, it directly queries
the instance balances of USDC and WETH in Uniswap and
uses their ratio as the price.

To exploit, the adversary drastically decreases the price of
a collateral, forcefully making a victim’s position liquidable.
She then liquidates a valuable collateral with a much smaller
amount of fund. Assume Bob (victim) deposits 100 WETH
as collateral and borrows 100,000 USDC. Also assume that
the current price of WETH is $4,000 and the Uniswap
AMM holds 100 WETH and 400,000 USDC. Note that
Bob’s current position is healthy and cannot be liquidated,
since the value of his debt is $100,000 and his collat-
eral worths $400,000. Alice, the adversary, can exploit the
aforementioned vulnerability by encapsulating the following
three actions into a single transaction. Specifically, she first
exchanges 100 WETH for 200,000 USDC through UniSwap,
making the AMM’s balances of WETH and USDC 200 and
200,000, respectively. Note that although the current real-
world price of WETH is $4, 000, Alice pays 100 WETH for
200,000 USDC, according to the constant-product invariant,
i.e., 100 x 400,000 = (100 4 100) x (400,000 — 200, 000).
Alice then invokes 1iquidate (Bob), which succeeds since
Bob’s position depreciates with a WETH price of $1000 (due
to the instant balances of WETH and USDC in the AMM), i.e.,
100 x 1000 x 0.8 < 100,000 at line 12. By paying 100, 000
USDC, Alice gets 100 WETH whose real-world value is
$400, 000. She acquires a large profit of $300,000. After that,
Alice re-balances the AMM by exchanging 200,000 USDC
for 100 WETH, retrieving her initial attack funds. The bug
was fixed by using the Uniswap official oracle API. [J

Flash Loans. Recall that the aforementioned exploit requires
a tremendous amount of initial funds, i.e., 100 WETH with
$400,000 real-world value, which seems to hinder the im-
pact of price oracle manipulation. However, flash loan, a
unique and innovative lending model enabled by blockchain
techniques, makes such attacks easily realizable. It allows
users to borrow (a tremendous amount of) debts without
depositing any collateral. It leverages the atomicity of block-
chain transactions, that is, the borrow happens at the beginning
of a transaction and the debt is payed off at the end. An
example can be found in §III-B of our supplementary material.

Abstract Bug Model and Remedy. Given a price oracle
Core, an application contract C, and lending contract(s) C;

contract Vote {
struct Proposal ({
uint160 sTime; address newOwner;
}

IERC20 votingToken;

address owner;

Proposal proposal;

function propose () external {
require (proposal.sTime == 0, "on-going proposal");
proposal = Proposal (block.timestamp, msg.sender);

function vote (uint amount) external ({
require (proposal.sTime + 2 days > block.timestamp,
"voting has ended");

1

2

3

4

5

6

7

8

9

10

11

12 }
13

14

15

16 votingToken.transferFrom (
17

18

19
20

msg.sender, address(this), amount);
}
function end() external ({
require (proposal.sTime != 0, "no proposal");

21 require (proposal.sTime + 2 days < block.timestamp,
22 "voting has not ended");
23 require (votingToken.balanceOf (address (this)) «2 >
24 votingToken.totalSupply (), "vote failed");
25 owner = proposal.newOwner;
26 delete proposal;
27 }
28 function getLockedFunds () external onlyOwner { ... }

Fig. 6: A voting contract vulnerability

supporting flash loans, C' needs to query C,,.. for prices which
are based on instant balances (or balances within a short time)
in Cy,., and C; needs to have sufficient funds to manipulate
the balance ratio in C,,,... The cost of the attack is minimum,
including just gas and fees, as the flash loan is paid off at the
end. The profit depends on how much price changes can be
induced. To remedy such bugs, developers simply use official
APIs strictly following the specification.

B. Privilege Escalation (C5)

These bugs arise when an (unexpected) sequence of func-
tions can be invoked to bypass access control.

Example. Fig. 6 presents a real-world case from an
anonymized contract (upon developers’ request). The code is
completely rewritten to ensure anonymity while its essence is
retained. This is a voting contract where users can elect a new
contract owner by voting. In lines 2-4, the contract defines a
data structure Proposal to describe a proposal with sTime
denoting the start time of voting and newOwner the proposed
new owner. There are three state variables vot ingToken,
owner, and proposal denoting the token used for voting
(line 5), the current contract owner (line 6), and an on-going
proposal (line 7), respectively. Function propose (line 9)
allows a user to propose himself as the new owner, which
creates a new proposal (at line 11) and sets the current block
time as the start time and msg. sender the proposed owner.
Observe that there can only be one on-going proposal (line 10).
Users vote by function vote, in which they send their voting
tokens to the contract (lines 16-17) to support a proposal. Note
that users can only vote in the first two days after the voting
starts, guarded by the require in lines 14-15. The voting
ends two days later, and the decision is made by function
end. Function end first checks whether there is an on-going
proposal (line 20) and whether the voting has lasted for at

least 2 days (lines 21-22). In lines 23-24, the function then
checks whether over 50% votingToken holders have voted
for the proposal. If so, a critical operation of setting a new
contract owner is performed (line 25). At line 28, a privileged
function getLockedFunds allows the owner to get all the
locked funds. Note that both functions vote and end strictly
constrain the invocation time, which constitutes an access
control preventing the two functions from being invoked in
a single transaction. Otherwise, an adversary could invoke
function vote with a tremendous amount of flash-loaned
votingToken and force a malicious proposal to go through
(similar to the exploit in §VII-A). However, an unexpected call
sequence can evade the access control. Specifically, consider
an adversary Alice proposes herself as the owner. When
the time is approaching the deadline proposal.sTime
+ 2 days, she launches an attack wrapping the following
actions into a single transaction, including 1) flash-loaning a
large amount of votingToken from its AMM contract, 2)
invoking votingToken.transferFrom, a fund transfer
function provided by all ERC20 tokens to directly transfer the
loaned amount to the contract without any access control, 3)
invoking end to become the owner, 4) getting locked funds
by function get LockedFunds, and 5) paying off the flash-
loan debt. Intuitively, Alice “votes” without calling the vote
function. The developers did not anticipate such a business
flow and hence did not guard properly. [

Abstract Bug Model and Remedy. Let a business flow B be
a sequence of transactions t1, ..., t,, each denoting an external
function invocation, and n the length of flow which may be
equal to or larger than 1. Assume 5 has some critical operation
f guarded by a set of access control checks, denoted as P,
a conjunction of multiple checks. However, there exists an
(unexpected) business flow ¢, ... t/ that can reach f with
access control P’ and P’ < P (here the operator < means
weaker-than). The challenges of identifying this type of bugs
lie in recognizing sensitive operations, which may require
domain knowledge, and finding the multiple paths that can
lead to the operations. The fixes are to add the missing access
control checks or prevent the unexpected paths.

C. Other Machine Unauditable Bug Types

Other machine unauditable bug types are detailed in our
supplementary material (§III -§VII).

Finding 10: Five out of the seven MUB categories (account-
ing for 60% of MUBs), namely, all except (C2) accounting
errors and (C7) implementation specific bugs, have general
abstract models which may serve as oracles for future
automated tools.

D. Difficulty of Bug Fix

We inspect the patches for Codedrena bugs. For each bug,
we use git blame on the up-to-date version of its project’s
repository. We then find the commit or pull request proposed
to fix the bug. We exclude comments, blank lines, and unit
tests, when counting the lines of code. Table VIII presents the
results. Rows LoC (+) and LoC (-) denote how many lines of

10

TABLE VIII: Patches for
MUB:s.

TABLE IX: Guided auditing
C1 C2 C3 C4 C5 C6 CT

C1 C2 C3 C4 C5C6 #Bugs(15) 2 2 1 1 4 2 3
LoC (+) 9.6 6.0 124 14.8 6.6 8.5 Total Bounty Awarded $102,660
LoC (-) 2.6 44 84 132 0.6 5.8 Total Funds Protected $22.52 M

code developers added and removed on average to fix bugs of
each type. Observe that (C2) erroneous accounting and (C5)
privilege escalation bugs only require around 7-10 lines to fix.
(C4) Inconsistent state update bugs require more lines to fix,
because the patches tend to use a new struct to pack all
correlated state variables, leading to more changes.

Finding 11: It is usually not difficult to fix MUBs (i.e., with
15 lines of changes on average).

VIII. GUIDED AUDITING

We started to audit real-world contracts using our findings
as the guidance since April 2022. By the time of writing, we
have found 15 confirmed zero-days with a few more under
the inspection of judges. Table IX summarizes the confirmed
bugs for individual bug types. All the confirmed ones are
rated critical. We also participated in three Code4rena contests
in July and ranked #1 in one of them, out of the ~ 100
teams/individuals that had submitted at least one valid report.
The other two contest results are still in the hands of judges by
the time of submission. Our aggregated bounty is $102, 660 so
far and the total funds protected due to our reports add up to
$22.52 millions. More importantly, we have strategized based
on our findings. For example, we have focused on finding price
oracle manipulations (POM) and privilege escalations (PE),
the two most popular bugs according to our study and found
2 POMs and 4 PEs. We also prioritize the bug types to audit
according to the project’s category. The abstract bug models
are quite helpful too. For example, when we were looking
for PE bugs, we first identified a critical operation f (see
Section VII-B) and then listed their enclosing business flows
explicit from the code, leveraging documentation and code
hints such as time windows and locks. We then exhaustively
enumerate other (usually implicit) operation paths reaching the
same f and check their access control.

IX. RELATED WORK

There are a body of existing empirical studies of smart
contract bugs [25]-[28], [95], [96]. Compared to these studies,
we do not focus on bugs in the development stage. We
study a large number of latest exploitable/exploited bugs. We
study unique perspectives such as prevalence, difficulty level,
abstract models, and fixes. Detailed comparison can be found
in §VIII of our supplementary material.

X. CONCLUSION

We study 516 smart contract security bugs and exploits. We
categorize them by root causes and study their distributions,
repair strategies, and audit difficulty levels. We have six
findings. We also perform guided auditting based on these
findings and have found 15 critical zero-days in three months
that could endanger $22.52 millions funds if exploited.

[1]
[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

[27]

REFERENCES

“Bitcoin market cap.” [Online]. Available: https://coinmarketcap.com/
“The growing rate of defi fund loss.” [Online]. Available: https:
/twitter.com/PeckShieldAlert/status/1520620826613010432

V. Wiistholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020.

“crytic/echidna.” [Online]. Available: https://github.com/crytic/echidna
“foundry-rs/foundry.” [Online]. Available: https://github.com/foundry-
rs/foundry

J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha,
“Smartian: Enhancing smart contract fuzzing with static and dynamic
data-flow analyses,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 1EEE, 2021.

J. He, M. Balunovi¢, N. Ambroladze, P. Tsankov, and M. Vecheyv,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016.

N. He, R. Zhang, L. Wu, H. Wang, X. Luo, Y. Guo, T. Yu, and
X. Jiang, “Security analysis of eosio smart contracts,” arXiv preprint
arXiv:2003.06568, 2020.

J. Frank, C. Aschermann, and T. Holz, “{ETHBMC}: A bounded model
checker for smart contracts,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020.

Z. Nehai, P-Y. Piriou, and F. Daumas, “Model-checking of smart
contracts,” in 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData). 1EEE, 2018.

M. Bartoletti and R. Zunino, “Verifying liquidity of bitcoin contracts,” in
International Conference on Principles of Security and Trust. Springer,
2019.

N. Atzei, M. Bartoletti, S. Lande, N. Yoshida, and R. Zunino, ‘“Devel-
oping secure bitcoin contracts with bitml,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019.

J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019.

“Chaos labs.” [Online]. Available: https://chaoslabs.xyz/

“Tenderly - ethereum development platform.” [Online]. Available:
https://tenderly.co/

“The nine largest crypto hacks in 2022 [Online].
https://blockworks.co/the-nine-largest-crypto-hacks-in-2022/
D. Larochelle and D. Evans, “Statically detecting likely buffer overflow
vulnerabilities,” in 10th USENIX Security Symposium (USENIX Security
01), 2001.

F. J. Serna, “The info leak era on software exploitation,” Black Hat USA,
2012.

L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege es-
calation attacks on android,” in international conference on Information
security. Springer, 2010.

“Codedrena.” [Online]. Available: https://code4rena.com

“Leaderboard - code4rena.” [Online]. Available: https://code4rena.com/
leaderboard

“samczsun (@samczsun).”
samczsun

“Peckshield twitter.” [Online]. Available: https://twitter.com/peckshield
N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International conference on principles of
security and trust. Springer, 2017.

W. Dingman, A. Cohen, N. Ferrara, A. Lynch, P. Jasinski, P. E. Black,
and L. Deng, “Classification of smart contract bugs using the nist bugs
framework,” in 2019 IEEE 17th International Conference on Software
Engineering Research, Management and Applications (SERA), 2019.

P. Zhang, F. Xiao, and X. Luo, “A framework and dataset for bugs in
ethereum smart contracts,” in 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 1EEE, 2020.

Available:

[Online]. Available: https://twitter.com/

11

(28]

[29]

(30]

[31]
[32]
[33]
[34]
(35]
[36]
[37]

[38]

(39]
[40]
[41]
[42]

[43]
[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining
smart contract defects on ethereum,” IEEE Transactions on Software
Engineering, 2020.

V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, 2014.

L. Anderson, R. Holz, A. Ponomarev, P. Rimba, and I. Weber, ‘“New
kids on the block: an analysis of modern blockchains,” arXiv preprint
arXiv:1606.06530, 2016.

“Ethereum market capital 2022 [Online]. Available: https:
//coinmarketcap.com/currencies/ethereum/
“Solidity documentation.” [Online]. Available: https://

docs.soliditylang.org/en/v0.8.15/

“Serpent documentation.” [Online]. Available: https://www.cs.cmu.edu/
~music/serpent/doc/serpent.htm

L. Zhang, X. Ma, and Y. Liu, “Sok: Blockchain decentralization,” arXiv
preprint arXiv:2205.04256, 2022.

“Erc20 token standard.” [Online]. Available: https://eips.ethereum.org/
EIPS/eip-20

“Erc721 non-fungible token standard.” [Online]. Available: https:
/leips.ethereum.org/EIPS/eip-721

“Erc1155 multi-token standard.” [Online]. Available: https:
/leips.ethereum.org/EIPS/eip-1155
“Redacted cartel custom approval logic bugfix review.” [On-

line]. Available: https://medium.com/immunefi/redacted-cartel-custom-
approval-logic-bugfix-review-9b2d039ca2c5

“Judging criteria - codedrena.” [Online]. Available:
/ldocs.codedrena.com/awarding/judging-criteria#festimating-risk
C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

“Defillama - defi bashboard.” [Online]. Available: https://defillama.com/
“pwning.eth (@pwningeth).” [Online]. Available: https://twitter.com/
PwningEth

“Paradigm twitter.” [Online]. Available: https://twitter.com/paradigm
“Certik twitter.” [Online]. Available: https://twitter.com/CertiK
“Immunefi.” [Online]. Available: https://immunefi.com/explore/

C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
finding reentrancy bugs in smart contracts,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-
Companion). 1EEE, 2018.

B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). 1EEE, 2018.
H. Wang, Y. Li, S.-W. Lin, L. Ma, and Y. Liu, “Vultron: catching
vulnerable smart contracts once and for all,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER). 1EEE, 2019.

T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020.

H. Wang, Y. Liu, Y. Li, S.-W. Lin, C. Artho, L. Ma, and Y. Liu,
“Oracle-supported dynamic exploit generation for smart contracts,”
IEEE Transactions on Dependable and Secure Computing, 2020.

C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A
data dependency-aware hybrid fuzzer for smart contracts,” in 2021 IEEE
European Symposium on Security and Privacy (EuroS&P). 1EEE, 2021.
A. Groce and G. Grieco, “echidna-parade: a tool for diverse multicore
smart contract fuzzing,” in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021.

G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna:
effective, usable, and fast fuzzing for smart contracts,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020.

Y. Xue, J. Ye, W. Zhang, J. Sun, L. Ma, H. Wang, and J. Zhao, “xfuzz:
Machine learning guided cross-contract fuzzing,” IEEE Transactions on
Dependable and Secure Computing, 2022.

T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in 2017 IEEE 24th international conference on
software analysis, evolution and reengineering (SANER). 1EEE, 2017.
P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vecheyv, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018.

https:

https://coinmarketcap.com/
https://twitter.com/PeckShieldAlert/status/1520620826613010432
https://twitter.com/PeckShieldAlert/status/1520620826613010432
https://github.com/crytic/echidna
https://github.com/foundry-rs/foundry
https://github.com/foundry-rs/foundry
https://chaoslabs.xyz/
https://tenderly.co/
https://blockworks.co/the-nine-largest-crypto-hacks-in-2022/
https://code4rena.com
https://code4rena.com/leaderboard
https://code4rena.com/leaderboard
https://twitter.com/samczsun
https://twitter.com/samczsun
https://twitter.com/peckshield
https://coinmarketcap.com/currencies/ethereum/
https://coinmarketcap.com/currencies/ethereum/
https://docs.soliditylang.org/en/v0.8.15/
https://docs.soliditylang.org/en/v0.8.15/
https://www.cs.cmu.edu/~music/serpent/doc/serpent.htm
https://www.cs.cmu.edu/~music/serpent/doc/serpent.htm
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-1155
https://medium.com/immunefi/redacted-cartel-custom-approval-logic-bugfix-review-9b2d039ca2c5
https://medium.com/immunefi/redacted-cartel-custom-approval-logic-bugfix-review-9b2d039ca2c5
https://docs.code4rena.com/awarding/judging-criteria#estimating-risk
https://docs.code4rena.com/awarding/judging-criteria#estimating-risk
https://defillama.com/
https://twitter.com/PwningEth
https://twitter.com/PwningEth
https://twitter.com/paradigm
https://twitter.com/CertiK
https://immunefi.com/explore/

(571

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

(751

[76]

(77

(78]

(791

L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, “Vandal: A scalable security analysis framework for smart
contracts,” arXiv preprint arXiv:1809.03981, 2018.

N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: Surviving out-of-gas conditions in ethereum smart
contracts,” Proceedings of the ACM on Programming Languages, vol. 2,
no. OOPSLA, 2018.

E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and
H. Kurihara, “Security assurance for smart contract,” in 2018 9th IFIP
International Conference on New Technologies, Mobility and Security
(NTMS). IEEE, 2018.

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the lIst International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018.

S. Kalra, S. Goel, M. Dhawan, and S. Sharma, ‘“Zeus: analyzing safety
of smart contracts.” in Ndss, 2018.

M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” 2021.

S. Wang, C. Zhang, and Z. Su, “Detecting nondeterministic payment
bugs in ethereum smart contracts,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. OOPSLA, 2019.

J. Huang, K. Zhou, A. Xiong, and D. Li, “Smart contract vulnerability
detection model based on multi-task learning,” Sensors, 2022.
“ethereum/remix-project,” 2022. [Online]. Available: https://github.com/
ethereum/remix-project

S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, and Y. Zohar, “Online detection of effectively callback free
objects with applications to smart contracts,” Proceedings of the ACM
on Programming Languages, vol. 2, no. POPL, 2017.

A. Hajdu and D. Jovanovié, “solc-verify: A modular verifier for solidity
smart contracts,” in Working conference on verified software: theories,
tools, and experiments. Springer, 2019.

Y. Wang, S. K. Lahiri, S. Chen, R. Pan, I. Dillig, C. Born, I. Naseer, and
K. Ferles, “Formal verification of workflow policies for smart contracts
in azure blockchain,” in Working Conference on Verified Software:
Theories, Tools, and Experiments. Springer, 2019.

S. So, M. Lee, J. Park, H. Lee, and H. Oh, “Verismart: A highly precise
safety verifier for ethereum smart contracts,” in 2020 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2020.

B. Tan, B. Mariano, S. Lahiri, I. Dillig, and Y. Feng, “Soltype:
Refinement types for solidity,” arXiv preprint arXiv:2110.00677, 2021.
1. Nikoli¢, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
34th annual computer security applications conference, 2018.

J. Krupp and C. Rossow, “{teEther}: Gnawing at ethereum to auto-
matically exploit smart contracts,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018.

C. Ferreira Torres, J. Schiitte et al., “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in 34th Annual Computer Security Applica-
tions Conference (ACSAC’18), San Juan, Puerto Rico, USA, December
3-7, 2018, 2018.

M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). 1EEE, 2019.

J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang, “scompile: Crit-
ical path identification and analysis for smart contracts,” in International
Conference on Formal Engineering Methods. Springer, 2019.

Z. Wang, B. Wen, Z. Luo, and S. Liu, “Mar: A dynamic symbol
execution detection method for smart contract reentry vulnerability,”
in International Conference on Blockchain and Trustworthy Systems.
Springer, 2021.

S. So, S. Hong, and H. Oh, “SmarTest: Effectively hunting vulnerable
transaction sequences in smart contracts through language Model-
Guided symbolic execution,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021.
“Consensys/mythril,” 2022. [Online]. Available: https://github.com/
ConsenSys/mythril

P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna, “Sailfish:
Vetting smart contract state-inconsistency bugs in seconds,” in 2022
IEEE Symposium on Security and Privacy (SP). 1EEE, 2022.

12

[80]

[81]

[82]

(83]
[84]

(85]

[86]

[87]
(88]
[89]
[90]
[91]

[92]
(93]

[94]

[95]

[96]

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Transac-
tions on Information and System Security (TISSEC), 2009.

N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
ACM Computing Surveys (CSUR), 2017.

E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, pp. 465-470, 1982.

“Trail of bits.” [Online]. Available: https://www.trailofbits.com/

“Blockchain technology solutions.” [Online]. Available: https:
//consensys.net/
“Compound finance website.” [Online]. Available: https:

/lcompound.finance/

“Defi money market compound overpays millions in comp rewards
in possible exploit; founder says $80m at risk.” [Online]. Avail-
able: https://www.coindesk.com/tech/2021/09/30/defi-money-market-
compound-overpays- 1 Sm-in-comp-rewards-in-possible-exploit/

“Compound — doc — audits.” [Online]. Available: https:
/lcompound.finance/docs/security#audits
“Compound — doc — formal verification.” [Online]. Available:

https://compound.finance/docs/security#formal-verification

“Wiener doge exploit” [Online]. Available: https://www.certik.com/
resources/blog/Br4j8oVnz9zKqW3okCyD9-wiener-doge-exploit
“Carnival lab exploit.” [Online]. Available: https://watcher.guru/news/
did-this-hacker- get-away-with-a-3-8-million-nft-hack

“Pancakeswap exploit.” [Online]. Available: https://www .bsc.news/post/
pancakeswap-emergency-brake-on-syrup-pools

“Home — uniswap protocol.” [Online]. Available: https://uniswap.org/
R. F. Muth, “The derived demand curve for a productive factor and the
industry supply curve,” Oxford Economic Papers, vol. 16, no. 2, 1964.
“Deus.finance - smart contract audit report.”” [Online]. Available:
https://solidity.finance/audits/DEUS/

K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step
by step towards creating a safe smart contract: Lessons and insights
from a cryptocurrency lab,” in International conference on financial
cryptography and data security. Springer, 2016.

“Classification of smart contract vulnerabilities.” [Online]. Available:
https://github.com/smartdec/classification

https://github.com/ethereum/remix-project
https://github.com/ethereum/remix-project
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://www.trailofbits.com/
https://consensys.net/
https://consensys.net/
https://compound.finance/
https://compound.finance/
https://www.coindesk.com/tech/2021/09/30/defi-money-market-compound-overpays-15m-in-comp-rewards-in-possible-exploit/
https://www.coindesk.com/tech/2021/09/30/defi-money-market-compound-overpays-15m-in-comp-rewards-in-possible-exploit/
https://compound.finance/docs/security#audits
https://compound.finance/docs/security#audits
https://compound.finance/docs/security#formal-verification
https://www.certik.com/resources/blog/Br4j8oVnz9zKqW3okCyD9-wiener-doge-exploit
https://www.certik.com/resources/blog/Br4j8oVnz9zKqW3okCyD9-wiener-doge-exploit
https://watcher.guru/news/did-this-hacker-get-away-with-a-3-8-million-nft-hack
https://watcher.guru/news/did-this-hacker-get-away-with-a-3-8-million-nft-hack
https://www.bsc.news/post/pancakeswap-emergency-brake-on-syrup-pools
https://www.bsc.news/post/pancakeswap-emergency-brake-on-syrup-pools
https://uniswap.org/
https://solidity.finance/audits/DEUS/
https://github.com/smartdec/classification

	Introduction
	Background
	Research Questions and Study Methodology
	(RQ1) On the Effectiveness of Exsisting Automatic Tools
	(RQ2) On the Difficulty of Auditing Exploitable Bugs
	(RQ3) On the Categories of Machine Unauditable Bugs
	Root Causes and Categorization
	Bug Distributions in Different Types of Projects

	(RQ4) On the Symptoms and Fixes of Machine Unauditable Bugs
	Price Oracle Manipulation (C1)
	Privilege Escalation (C5)
	Other Machine Unauditable Bug Types
	Difficulty of Bug Fix

	Guided Auditing
	Related Work
	Conclusion
	References

